Southampton

Is there the potential for energy harvesting at single point moorings? Catherine Hollyhead

Dr. N.C. Townsend, Dr. J.I.R Blake, Prof. R. A. Shenoi

The RNLI is the charity that saves lives at sea

Over 140,00 saved lives

20th March 2015

Southampton

Aims of experiments and modelling

1. Understand the patterns of behaviour by recording the motions and forces of a Lifeboat interacting with its mooring buoy in both testing tanks and at full scale.

2. Use the data to validate a computer simulation model to design the most effective configuration. Quantify the motions and forces and assess the potential and feasibility of energy scavenging at the mooring location.

Southampton

The RNLI is the charity that saves lives at sea

Systems and Information Management system

WITT (15 Kg) 1.3 kW Gyroscopic WEC 100 kW Powerbuoy 150 kW Neptune 3.1 (2,200 Kg) 225 kW

The 932kW Caterpillar diesel engines The on board electronics or overnight heating

http://rnli.org/aboutus/lifeboatsandstations/lifeboats/Pages/shannon.aspx

Flume test series 1

Myers and Galloway (2011)

- 6 Water depths + tidal flow combinations
- 3 Mooring Line lengths
- Scale and twice scale buoys, no buoy

Flume test series 2

- •Extra mass added to boat
 - Different buoys tested

93 six minute tests were filmed and mooring force recorded.

Shorter mooring rope less average force

Heavier boat less maximum force

Larger sized buoy less average force

One minute of motion -fishtailing

Next stages

- Correlation (ANOVA) analysis to interpret the load and motion data for different configurations.
- Merge a double pendulum motion model with catenary line dynamics to simulate observed fishtailing behaviour.
- Find optimal combination of line length, buoy shape and size to provide energy extraction from motions.

Thank you